ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.08541
25
4

Where is the signal in tokenization space?

16 August 2024
Renato Lui Geh
Honghua Zhang
Kareem Ahmed
Benjie Wang
Guy Van den Broeck
ArXivPDFHTML
Abstract

Large Language Models (LLMs) are typically shipped with tokenizers that deterministically encode text into so-called canonical token sequences, to which the LLMs assign probability values. One common assumption is that the probability of a piece of text is the probability of its canonical token sequence. However, the tokenization of a string is not unique: e.g., the Llama2 tokenizer encodes Tokens as [Tok,ens], but [Tok,en,s] also represents the same text. In this paper, we study non-canonical tokenizations. We prove that, given a string, it is computationally hard to find the most likely tokenization for an autoregressive LLM, as well as to compute the marginal probability over all possible tokenizations. We then show how the marginal is, in most cases, indistinguishable from the canonical probability. Surprisingly, we then empirically demonstrate the existence of a significant amount of signal hidden within tokenization space. Notably, by simply aggregating the probabilities of non-canonical tokenizations, we achieve improvements across a range of LLM evaluation benchmarks for a variety of architectures, including transformers and state space models.

View on arXiv
Comments on this paper