ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.07922
18
5

A Deep Features-Based Approach Using Modified ResNet50 and Gradient Boosting for Visual Sentiments Classification

15 August 2024
Muhammad Arslan
Muhammad Mubeen
Arslan Akram
S. Abbasi
Muhammad Salman Ali
Muhammad Usman Tariq
ArXiv (abs)PDFHTML
Abstract

The versatile nature of Visual Sentiment Analysis (VSA) is one reason for its rising profile. It isn't easy to efficiently manage social media data with visual information since previous research has concentrated on Sentiment Analysis (SA) of single modalities, like textual. In addition, most visual sentiment studies need to adequately classify sentiment because they are mainly focused on simply merging modal attributes without investigating their intricate relationships. This prompted the suggestion of developing a fusion of deep learning and machine learning algorithms. In this research, a deep feature-based method for multiclass classification has been used to extract deep features from modified ResNet50. Furthermore, gradient boosting algorithm has been used to classify photos containing emotional content. The approach is thoroughly evaluated on two benchmarked datasets, CrowdFlower and GAPED. Finally, cutting-edge deep learning and machine learning models were used to compare the proposed strategy. When compared to state-of-the-art approaches, the proposed method demonstrates exceptional performance on the datasets presented.

View on arXiv
Comments on this paper