ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.07425
53
3

Exploring Retrieval Augmented Generation in Arabic

14 August 2024
S. El-Beltagy
Mohamed A. Abdallah
    RALM
ArXivPDFHTML
Abstract

Recently, Retrieval Augmented Generation (RAG) has emerged as a powerful technique in natural language processing, combining the strengths of retrieval-based and generation-based models to enhance text generation tasks. However, the application of RAG in Arabic, a language with unique characteristics and resource constraints, remains underexplored. This paper presents a comprehensive case study on the implementation and evaluation of RAG for Arabic text. The work focuses on exploring various semantic embedding models in the retrieval stage and several LLMs in the generation stage, in order to investigate what works and what doesn't in the context of Arabic. The work also touches upon the issue of variations between document dialect and query dialect in the retrieval stage. Results show that existing semantic embedding models and LLMs can be effectively employed to build Arabic RAG pipelines.

View on arXiv
Comments on this paper