ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.04939
29
1

Demystifying and Detecting Cryptographic Defects in Ethereum Smart Contracts

9 August 2024
Jiashuo Zhang
Yiming Shen
Jiachi Chen
J. Su
Yanlin Wang
Ting Chen
Jianbo Gao
Zhong Chen
ArXivPDFHTML
Abstract

Ethereum has officially provided a set of system-level cryptographic APIs to enhance smart contracts with cryptographic capabilities. These APIs have been utilized in over 10% of Ethereum transactions, motivating developers to implement various on-chain cryptographic tasks, such as digital signatures. However, since developers may not always be cryptographic experts, their ad-hoc and potentially defective implementations could compromise the theoretical guarantees of cryptography, leading to real-world security issues. To mitigate this threat, we conducted the first study aimed at demystifying and detecting cryptographic defects in smart contracts. Through the analysis of 2,406 real-world security reports, we defined nine types of cryptographic defects in smart contracts with detailed descriptions and practical detection patterns. Based on this categorization, we proposed CrySol, a fuzzing-based tool to automate the detection of cryptographic defects in smart contracts. It combines transaction replaying and dynamic taint analysis to extract fine-grained crypto-related semantics and employs crypto-specific strategies to guide the test case generation process. Furthermore, we collected a large-scale dataset containing 25,745 real-world crypto-related smart contracts and evaluated CrySol's effectiveness on it. The result demonstrated that CrySol achieves an overall precision of 95.4% and a recall of 91.2%. Notably, CrySol revealed that 5,847 (22.7%) out of 25,745 smart contracts contain at least one cryptographic defect, highlighting the prevalence of these defects.

View on arXiv
Comments on this paper