ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.04407
20
0

Clutter Classification Using Deep Learning in Multiple Stages

8 August 2024
Ryan Dempsey
Jonathan Ethier
ArXiv (abs)PDFHTML
Abstract

Path loss prediction for wireless communications is highly dependent on the local environment. Propagation models including clutter information have been shown to significantly increase model accuracy. This paper explores the application of deep learning to satellite imagery to identify environmental clutter types automatically. Recognizing these clutter types has numerous uses, but our main application is to use clutter information to enhance propagation prediction models. Knowing the type of obstruction (tree, building, and further classifications) can improve the prediction accuracy of key propagation metrics such as path loss.

View on arXiv
Comments on this paper