ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.01892
31
0

Re-ENACT: Reinforcement Learning for Emotional Speech Generation using Actor-Critic Strategy

4 August 2024
Ravi Shankar
Archana Venkataraman
ArXivPDFHTML
Abstract

In this paper, we propose the first method to modify the prosodic features of a given speech signal using actor-critic reinforcement learning strategy. Our approach uses a Bayesian framework to identify contiguous segments of importance that links segments of the given utterances to perception of emotions in humans. We train a neural network to produce the variational posterior of a collection of Bernoulli random variables; our model applies a Markov prior on it to ensure continuity. A sample from this distribution is used for downstream emotion prediction. Further, we train the neural network to predict a soft assignment over emotion categories as the target variable. In the next step, we modify the prosodic features (pitch, intensity, and rhythm) of the masked segment to increase the score of target emotion. We employ an actor-critic reinforcement learning to train the prosody modifier by discretizing the space of modifications. Further, it provides a simple solution to the problem of gradient computation through WSOLA operation for rhythm manipulation. Our experiments demonstrate that this framework changes the perceived emotion of a given speech utterance to the target. Further, we show that our unified technique is on par with state-of-the-art emotion conversion models from supervised and unsupervised domains that require pairwise training.

View on arXiv
Comments on this paper