ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.01455
27
0

Ontology of Belief Diversity: A Community-Based Epistemological Approach

25 July 2024
Tyler Fischella
Erin van Liemt
Qiuyi
Qiuyi Zhang
ArXivPDFHTML
Abstract

AI applications across classification, fairness, and human interaction often implicitly require ontologies of social concepts. Constructing these well, especially when there are many relevant categories, is a controversial task but is crucial for achieving meaningful inclusivity. Here, we focus on developing a pragmatic ontology of belief systems, which is a complex and often controversial space. By iterating on our community-based design until mutual agreement is reached, we found that epistemological methods were best for categorizing the fundamental ways beliefs differ, maximally respecting our principles of inclusivity and brevity. We demonstrate our methodology's utility and interpretability via user studies in term annotation and sentiment analysis experiments for belief fairness in language models.

View on arXiv
Comments on this paper