52
0

Reconsidering Token Embeddings with the Definitions for Pre-trained Language Models

Abstract

Learning token embeddings based on token co-occurrence statistics has proven effective for both pre-training and fine-tuning in natural language processing. However, recent studies have pointed out the distribution of learned embeddings degenerates into anisotropy, and even pre-trained language models (PLMs) suffer from a loss of semantics-related information in embeddings for low-frequency tokens. This study first analyzes fine-tuning dynamics of a PLM, BART-large, and demonstrates its robustness against degeneration. On the basis of this finding, we propose DefinitionEMB, a method that utilizes definitions to construct isotropically distributed and semantics-related token embeddings for PLMs while maintaining original robustness during fine-tuning. Our experiments demonstrate the effectiveness of leveraging definitions from Wiktionary to construct such embeddings for RoBERTa-base and BART-large. Furthermore, the constructed embeddings for low-frequency tokens improve the performance of these models across various GLUE and four text summarization datasets.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.