ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.01251
21
1

NeRFoot: Robot-Footprint Estimation for Image-Based Visual Servoing

2 August 2024
Prakhar Godara
Luke Robinson
Daniele De Martini
ArXivPDFHTML
Abstract

This paper investigates the utility of Neural Radiance Fields (NeRF) models in extending the regions of operation of a mobile robot, controlled by Image-Based Visual Servoing (IBVS) via static CCTV cameras. Using NeRF as a 3D-representation prior, the robot's footprint may be extrapolated geometrically and used to train a CNN-based network to extract it online from the robot's appearance alone. The resulting footprint results in a tighter bound than a robot-wide bounding box, allowing the robot's controller to prescribe more optimal trajectories and expand its safe operational floor area.

View on arXiv
Comments on this paper