ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.01011
38
3

DASH: A Bimodal Data Exploration Tool for Interactive Text and Visualizations

2 August 2024
Dennis Bromley
V. Setlur
ArXivPDFHTML
Abstract

Integrating textual content, such as titles, annotations, and captions, with visualizations facilitates comprehension and takeaways during data exploration. Yet current tools often lack mechanisms for integrating meaningful long-form prose with visual data. This paper introduces DASH, a bimodal data exploration tool that supports integrating semantic levels into the interactive process of visualization and text-based analysis. DASH operationalizes a modified version of Lundgard et al.'s semantic hierarchy model that categorizes data descriptions into four levels ranging from basic encodings to high-level insights. By leveraging this structured semantic level framework and a large language model's text generation capabilities, DASH enables the creation of data-driven narratives via drag-and-drop user interaction. Through a preliminary user evaluation, we discuss the utility of DASH's text and chart integration capabilities when participants perform data exploration with the tool.

View on arXiv
Comments on this paper