ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.00783
29
0

Data-driven Verification of DNNs for Object Recognition

17 July 2024
Clemens Otte
Yinchong Yang
Danny Benlin Oswan
    AAML
ArXivPDFHTML
Abstract

The paper proposes a new testing approach for Deep Neural Networks (DNN) using gradient-free optimization to find perturbation chains that successfully falsify the tested DNN, going beyond existing grid-based or combinatorial testing. Applying it to an image segmentation task of detecting railway tracks in images, we demonstrate that the approach can successfully identify weaknesses of the tested DNN regarding particular combinations of common perturbations (e.g., rain, fog, blur, noise) on specific clusters of test images.

View on arXiv
Comments on this paper