ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.00775
34
3

Dilated convolution neural operator for multiscale partial differential equations

16 July 2024
Bo Xu
Xinliang Liu
Lei Zhang
    AI4CE
ArXivPDFHTML
Abstract

This paper introduces a data-driven operator learning method for multiscale partial differential equations, with a particular emphasis on preserving high-frequency information. Drawing inspiration from the representation of multiscale parameterized solutions as a combination of low-rank global bases (such as low-frequency Fourier modes) and localized bases over coarse patches (analogous to dilated convolution), we propose the Dilated Convolutional Neural Operator (DCNO). The DCNO architecture effectively captures both high-frequency and low-frequency features while maintaining a low computational cost through a combination of convolution and Fourier layers. We conduct experiments to evaluate the performance of DCNO on various datasets, including the multiscale elliptic equation, its inverse problem, Navier-Stokes equation, and Helmholtz equation. We show that DCNO strikes an optimal balance between accuracy and computational cost and offers a promising solution for multiscale operator learning.

View on arXiv
Comments on this paper