ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.20855
25
1

DeTurb: Atmospheric Turbulence Mitigation with Deformable 3D Convolutions and 3D Swin Transformers

30 July 2024
Zhicheng Zou
Nantheera Anantrasirichai
ArXivPDFHTML
Abstract

Atmospheric turbulence in long-range imaging significantly degrades the quality and fidelity of captured scenes due to random variations in both spatial and temporal dimensions. These distortions present a formidable challenge across various applications, from surveillance to astronomy, necessitating robust mitigation strategies. While model-based approaches achieve good results, they are very slow. Deep learning approaches show promise in image and video restoration but have struggled to address these spatiotemporal variant distortions effectively. This paper proposes a new framework that combines geometric restoration with an enhancement module. Random perturbations and geometric distortion are removed using a pyramid architecture with deformable 3D convolutions, resulting in aligned frames. These frames are then used to reconstruct a sharp, clear image via a multi-scale architecture of 3D Swin Transformers. The proposed framework demonstrates superior performance over the state of the art for both synthetic and real atmospheric turbulence effects, with reasonable speed and model size.

View on arXiv
Comments on this paper