51
1

Industrial-Grade Smart Troubleshooting through Causal Technical Language Processing: a Proof of Concept

Abstract

This paper describes the development of a causal diagnosis approach for troubleshooting an industrial environment on the basis of the technical language expressed in Return on Experience records. The proposed method leverages the vectorized linguistic knowledge contained in the distributed representation of a Large Language Model, and the causal associations entailed by the embedded failure modes and mechanisms of the industrial assets. The paper presents the elementary but essential concepts of the solution, which is conceived as a causality-aware retrieval augmented generation system, and illustrates them experimentally on a real-world Predictive Maintenance setting. Finally, it discusses avenues of improvement for the maturity of the utilized causal technology to meet the robustness challenges of increasingly complex scenarios in the industry.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.