94
3
v1v2v3v4v5 (latest)

Advancing Prompt Learning through an External Layer

Abstract

Prompt learning represents a promising method for adapting pre-trained vision-language models (VLMs) to various downstream tasks by learning a set of text embeddings. One challenge inherent to these methods is the poor generalization performance due to the invalidity of the learned text embeddings for unseen tasks. A straightforward approach to bridge this gap is to freeze the text embeddings in prompts, which results in a lack of capacity to adapt VLMs for downstream tasks. To address this dilemma, we propose a paradigm called EnPrompt with a novel External Layer (EnLa). Specifically, we propose a textual external layer and learnable visual embeddings for adapting VLMs to downstream tasks. The learnable external layer is built upon valid embeddings of pre-trained CLIP. This design considers the balance of learning capabilities between the two branches. To align the textual and visual features, we propose a novel two-pronged approach: i) we introduce the optimal transport as the discrepancy metric to align the vision and text modalities, and ii) we introduce a novel strengthening feature to enhance the interaction between these two modalities. Four representative experiments (i.e., base-to-novel generalization, few-shot learning, cross-dataset generalization, domain shifts generalization) across 15 datasets demonstrate that our method outperforms the existing prompt learning method.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.