ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.19393
33
0

Integrating Cognitive AI with Generative Models for Enhanced Question Answering in Skill-based Learning

28 July 2024
Rochan H. Madhusudhana
Rahul K. Dass
Jeanette Luu
Ashok K. Goel
    AI4Ed
ArXivPDFHTML
Abstract

In online learning, the ability to provide quick and accurate feedback to learners is crucial. In skill-based learning, learners need to understand the underlying concepts and mechanisms of a skill to be able to apply it effectively. While videos are a common tool in online learning, they cannot comprehend or assess the skills being taught. Additionally, while Generative AI methods are effective in searching and retrieving answers from a text corpus, it remains unclear whether these methods exhibit any true understanding. This limits their ability to provide explanations of skills or help with problem-solving. This paper proposes a novel approach that merges Cognitive AI and Generative AI to address these challenges. We employ a structured knowledge representation, the TMK (Task-Method-Knowledge) model, to encode skills taught in an online Knowledge-based AI course. Leveraging techniques such as Large Language Models, Chain-of-Thought, and Iterative Refinement, we outline a framework for generating reasoned explanations in response to learners' questions about skills.

View on arXiv
Comments on this paper