ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.19364
27
0

Defogger: A Visual Analysis Approach for Data Exploration of Sensitive Data Protected by Differential Privacy

28 July 2024
Xumeng Wang
Shuangcheng Jiao
Chris Bryan
    AAML
ArXivPDFHTML
Abstract

Differential privacy ensures the security of individual privacy but poses challenges to data exploration processes because the limited privacy budget incapacitates the flexibility of exploration and the noisy feedback of data requests leads to confusing uncertainty. In this study, we take the lead in describing corresponding exploration scenarios, including underlying requirements and available exploration strategies. To facilitate practical applications, we propose a visual analysis approach to the formulation of exploration strategies. Our approach applies a reinforcement learning model to provide diverse suggestions for exploration strategies according to the exploration intent of users. A novel visual design for representing uncertainty in correlation patterns is integrated into our prototype system to support the proposed approach. Finally, we implemented a user study and two case studies. The results of these studies verified that our approach can help develop strategies that satisfy the exploration intent of users.

View on arXiv
Comments on this paper