24
0

Aspects of importance sampling in parameter selection for neural networks using ridgelet transform

Abstract

The choice of parameters in neural networks is crucial in the performance, and an oracle distribution derived from the ridgelet transform enables us to obtain suitable initial parameters. In other words, the distribution of parameters is connected to the integral representation of target functions. The oracle distribution allows us to avoid the conventional backpropagation learning process; only a linear regression is enough to construct the neural network in simple cases. This study provides a new look at the oracle distributions and ridgelet transforms, i.e., an aspect of importance sampling. In addition, we propose extensions of the parameter sampling methods. We demonstrate the aspect of importance sampling and the proposed sampling algorithms via one-dimensional and high-dimensional examples; the results imply that the magnitude of weight parameters could be more crucial than the intercept parameters.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.