ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.18380
34
0

Effect of Duration and Delay on the Identifiability of VR Motion

25 July 2024
Mark Roman Miller
V. Nair
Eugy Han
C. DeVeaux
Christian Rack
Rui Wang
Brandon Huang
Marc Latoschik
James F. O’Brien
Jeremy N. Bailenson
ArXivPDFHTML
Abstract

Social virtual reality is an emerging medium of communication. In this medium, a user's avatar (virtual representation) is controlled by the tracked motion of the user's headset and hand controllers. This tracked motion is a rich data stream that can leak characteristics of the user or can be effectively matched to previously-identified data to identify a user. To better understand the boundaries of motion data identifiability, we investigate how varying training data duration and train-test delay affects the accuracy at which a machine learning model can correctly classify user motion in a supervised learning task simulating re-identification. The dataset we use has a unique combination of a large number of participants, long duration per session, large number of sessions, and a long time span over which sessions were conducted. We find that training data duration and train-test delay affect identifiability; that minimal train-test delay leads to very high accuracy; and that train-test delay should be controlled in future experiments.

View on arXiv
Comments on this paper