ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.16326
23
0

On The Expressive Power of Knowledge Graph Embedding Methods

23 July 2024
Jiexing Gao
Dmitry Rodin
Vasily Motolygin
Denis Zaytsev
ArXivPDFHTML
Abstract

Knowledge Graph Embedding (KGE) is a popular approach, which aims to represent entities and relations of a knowledge graph in latent spaces. Their representations are known as embeddings. To measure the plausibility of triplets, score functions are defined over embedding spaces. Despite wide dissemination of KGE in various tasks, KGE methods have limitations in reasoning abilities. In this paper we propose a mathematical framework to compare reasoning abilities of KGE methods. We show that STransE has a higher capability than TransComplEx, and then present new STransCoRe method, which improves the STransE by combining it with the TransCoRe insights, which can reduce the STransE space complexity.

View on arXiv
Comments on this paper