Cryptocurrency is a cryptography-based digital asset with extremely volatile
prices. Around 70billionworthofcrypto−currencyistradeddailyonexchanges.Tradingcrypto−currencyisdifficultduetotheinherentvolatilityofthecrypto−market.Inthiswork,wewanttotestthehypothesis:"Cantechniquesfromartificialintelligencehelpwithalgorithmicallytradingcryptocurrencies?".Inordertoaddressthisquestion,wecombineReinforcementLearning(RL)withpairtrading.Pairtradingisastatisticalarbitragetradingtechniquewhichexploitsthepricedifferencebetweenstatisticallycorrelatedassets.Wetrainreinforcementlearnerstodeterminewhenandhowtotradepairsofcryptocurrencies.Wedevelopnewrewardshapingandobservation/actionspacesforreinforcementlearning.WeperformedexperimentswiththedevelopedreinforcementlearneronpairsofBTC−GBPandBTC−EURdataseparatedby1−minuteintervals(n=263,520).Thetraditionalnon−RLpairtradingtechniqueachievedanannualisedprofitof8.33RL−basedpairtradingtechniqueachievedannualisedprofitsfrom9.9431.53significantlyoutperformmanualandtraditionalpairtradingtechniqueswhenappliedtovolatilemarketssuchascryptocurrencies.
We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.