ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.15906
37
0

An Ad-hoc graph node vector embedding algorithm for general knowledge graphs using Kinetica-Graph

22 July 2024
B. Karamete
Eli Glaser
ArXivPDFHTML
Abstract

This paper discusses how to generate general graph node embeddings from knowledge graph representations. The embedded space is composed of a number of sub-features to mimic both local affinity and remote structural relevance. These sub-feature dimensions are defined by several indicators that we speculate to catch nodal similarities, such as hop-based topological patterns, the number of overlapping labels, the transitional probabilities (markov-chain probabilities), and the cluster indices computed by our recursive spectral bisection (RSB) algorithm. These measures are flattened over the one dimensional vector space into their respective sub-component ranges such that the entire set of vector similarity functions could be used for finding similar nodes. The error is defined by the sum of pairwise square differences across a randomly selected sample of graph nodes between the assumed embeddings and the ground truth estimates as our novel loss function. The ground truth is estimated to be a combination of pairwise Jaccard similarity and the number of overlapping labels. Finally, we demonstrate a multi-variate stochastic gradient descent (SGD) algorithm to compute the weighing factors among sub-vector spaces to minimize the average error using a random sampling logic.

View on arXiv
Comments on this paper