ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.15203
34
1

Mask Guided Gated Convolution for Amodal Content Completion

21 July 2024
Kaziwa Saleh
Sándor Szénási
Zoltán Vámossy
    DiffM
ArXivPDFHTML
Abstract

We present a model to reconstruct partially visible objects. The model takes a mask as an input, which we call weighted mask. The mask is utilized by gated convolutions to assign more weight to the visible pixels of the occluded instance compared to the background, while ignoring the features of the invisible pixels. By drawing more attention from the visible region, our model can predict the invisible patch more effectively than the baseline models, especially in instances with uniform texture. The model is trained on COCOA dataset and two subsets of it in a self-supervised manner. The results demonstrate that our model generates higher quality and more texture-rich outputs compared to baseline models. Code is available at: https://github.com/KaziwaSaleh/mask-guided.

View on arXiv
Comments on this paper