ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.14495
66
5

Conformal Thresholded Intervals for Efficient Regression

3 January 2025
Rui Luo
Zhixin Zhou
ArXivPDFHTML
Abstract

This paper introduces Conformal Thresholded Intervals (CTI), a novel conformal regression method that aims to produce the smallest possible prediction set with guaranteed coverage. Unlike existing methods that rely on nested conformal frameworks and full conditional distribution estimation, CTI estimates the conditional probability density for a new response to fall into each interquantile interval using off-the-shelf multi-output quantile regression. By leveraging the inverse relationship between interval length and probability density, CTI constructs prediction sets by thresholding the estimated conditional interquantile intervals based on their length. The optimal threshold is determined using a calibration set to ensure marginal coverage, effectively balancing the trade-off between prediction set size and coverage. CTI's approach is computationally efficient and avoids the complexity of estimating the full conditional distribution. The method is theoretically grounded, with provable guarantees for marginal coverage and achieving the smallest prediction size given by Neyman-Pearson . Extensive experimental results demonstrate that CTI achieves superior performance compared to state-of-the-art conformal regression methods across various datasets, consistently producing smaller prediction sets while maintaining the desired coverage level. The proposed method offers a simple yet effective solution for reliable uncertainty quantification in regression tasks, making it an attractive choice for practitioners seeking accurate and efficient conformal prediction.

View on arXiv
Comments on this paper