40
3

DIR-BHRNet: A Lightweight Network for Real-time Vision-based Multi-person Pose Estimation on Smartphones

Abstract

Human pose estimation (HPE), particularly multi-person pose estimation (MPPE), has been applied in many domains such as human-machine systems. However, the current MPPE methods generally run on powerful GPU systems and take a lot of computational costs. Real-time MPPE on mobile devices with low-performance computing is a challenging task. In this paper, we propose a lightweight neural network, DIR-BHRNet, for real-time MPPE on smartphones. In DIR-BHRNet, we design a novel lightweight convolutional module, Dense Inverted Residual (DIR), to improve accuracy by adding a depthwise convolution and a shortcut connection into the well-known Inverted Residual, and a novel efficient neural network structure, Balanced HRNet (BHRNet), to reduce computational costs by reconfiguring the proper number of convolutional blocks on each branch. We evaluate DIR-BHRNet on the well-known COCO and CrowdPose datasets. The results show that DIR-BHRNet outperforms the state-of-the-art methods in terms of accuracy with a real-time computational cost. Finally, we implement the DIR-BHRNet on the current mainstream Android smartphones, which perform more than 10 FPS. The free-used executable file (Android 10), source code, and a video description of this work are publicly available on the page 1 to facilitate the development of real-time MPPE on smartphones.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.