ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.13518
42
0

Model-based Policy Optimization using Symbolic World Model

18 July 2024
Andrey Gorodetskiy
Konstantin Mironov
Aleksandr I. Panov
ArXivPDFHTML
Abstract

The application of learning-based control methods in robotics presents significant challenges. One is that model-free reinforcement learning algorithms use observation data with low sample efficiency. To address this challenge, a prevalent approach is model-based reinforcement learning, which involves employing an environment dynamics model. We suggest approximating transition dynamics with symbolic expressions, which are generated via symbolic regression. Approximation of a mechanical system with a symbolic model has fewer parameters than approximation with neural networks, which can potentially lead to higher accuracy and quality of extrapolation. We use a symbolic dynamics model to generate trajectories in model-based policy optimization to improve the sample efficiency of the learning algorithm. We evaluate our approach across various tasks within simulated environments. Our method demonstrates superior sample efficiency in these tasks compared to model-free and model-based baseline methods.

View on arXiv
Comments on this paper