ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.13379
25
1

Removing cloud shadows from ground-based solar imagery

18 July 2024
Amal Chaoui
Jay Morgan
A. Paiement
Jean Aboudarham
ArXivPDFHTML
Abstract

The study and prediction of space weather entails the analysis of solar images showing structures of the Sun's atmosphere. When imaged from the Earth's ground, images may be polluted by terrestrial clouds which hinder the detection of solar structures. We propose a new method to remove cloud shadows, based on a U-Net architecture, and compare classical supervision with conditional GAN. We evaluate our method on two different imaging modalities, using both real images and a new dataset of synthetic clouds. Quantitative assessments are obtained through image quality indices (RMSE, PSNR, SSIM, and FID). We demonstrate improved results with regards to the traditional cloud removal technique and a sparse coding baseline, on different cloud types and textures.

View on arXiv
Comments on this paper