49
0

Attenuation-Aware Weighted Optical Flow with Medium Transmission Map for Learning-based Visual Odometry in Underwater terrain

Abstract

This paper addresses the challenge of improving learning-based monocular visual odometry (VO) in underwater environments by integrating principles of underwater optical imaging to manipulate optical flow estimation. Leveraging the inherent properties of underwater imaging, the novel wflow-TartanVO is introduced, enhancing the accuracy of VO systems for autonomous underwater vehicles (AUVs). The proposed method utilizes a normalized medium transmission map as a weight map to adjust the estimated optical flow for emphasizing regions with lower degradation and suppressing uncertain regions affected by underwater light scattering and absorption. wflow-TartanVO does not require fine-tuning of pre-trained VO models, thus promoting its adaptability to different environments and camera models. Evaluation of different real-world underwater datasets demonstrates the outperformance of wflow-TartanVO over baseline VO methods, as evidenced by the considerably reduced Absolute Trajectory Error (ATE). The implementation code is available at: https://github.com/bachzz/wflow-TartanVO

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.