ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.12886
32
0

Whitening Not Recommended for Classification Tasks in LLMs

16 July 2024
Ali Forooghi
Shaghayegh Sadeghi
Jianguo Lu
ArXiv (abs)PDFHTML
Abstract

Sentence embedding is a cornerstone in NLP. Whitening has been claimed to be an effective operation to improve embedding quality obtained from Large Language Models (LLMs). However, we find that the efficacy of whitening is model-dependent and task-dependent. In particular, whitening degenerates embeddings for classification tasks. The conclusion is supported by extensive experiments. We also explored a variety of whitening operations, including PCA, ZCA, PCA-Cor, ZCA-Cor and Cholesky whitenings. A by-product of our research is embedding evaluation platform for LLMs called SentEval+.

View on arXiv
Comments on this paper