ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.11384
41
2

InvAgent: A Large Language Model based Multi-Agent System for Inventory Management in Supply Chains

16 July 2024
Yinzhu Quan
Zefang Liu
    LLMAG
ArXivPDFHTML
Abstract

Supply chain management (SCM) involves coordinating the flow of goods, information, and finances across various entities to deliver products efficiently. Effective inventory management is crucial in today's volatile and uncertain world. Previous research has demonstrated the superiority of heuristic methods and reinforcement learning applications in inventory management. However, the application of large language models (LLMs) as autonomous agents in multi-agent systems for inventory management remains underexplored. This study introduces a novel approach using LLMs to manage multi-agent inventory systems. Leveraging their zero-shot learning capabilities, our model, InvAgent, enhances resilience and improves efficiency across the supply chain network. Our contributions include utilizing LLMs for zero-shot learning to enable adaptive and informed decision-making without prior training, providing explainability and clarity through chain-of-thought, and demonstrating dynamic adaptability to varying demand scenarios while reducing costs and preventing stockouts. Extensive evaluations across different scenarios highlight the efficiency of our model in SCM.

View on arXiv
Comments on this paper