ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.10442
28
0

Inference at the data's edge: Gaussian processes for modeling and inference under model-dependency, poor overlap, and extrapolation

15 July 2024
Soonhong Cho
Doeun Kim
Chad Hazlett
ArXivPDFHTML
Abstract

The Gaussian Process (GP) is a highly flexible non-linear regression approach that provides a principled approach to handling our uncertainty over predicted (counterfactual) values. It does so by computing a posterior distribution over predicted point as a function of a chosen model space and the observed data, in contrast to conventional approaches that effectively compute uncertainty estimates conditionally on placing full faith in a fitted model. This is especially valuable under conditions of extrapolation or weak overlap, where model dependency poses a severe threat. We first offer an accessible explanation of GPs, and provide an implementation suitable to social science inference problems. In doing so we reduce the number of user-chosen hyperparameters from three to zero. We then illustrate the settings in which GPs can be most valuable: those where conventional approaches have poor properties due to model-dependency/extrapolation in data-sparse regions. Specifically, we apply it to (i) comparisons in which treated and control groups have poor covariate overlap; (ii) interrupted time-series designs, where models are fitted prior to an event by extrapolated after it; and (iii) regression discontinuity, which depends on model estimates taken at or just beyond the edge of their supporting data.

View on arXiv
Comments on this paper