ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.10220
46
0

PAFUSE: Part-based Diffusion for 3D Whole-Body Pose Estimation

14 July 2024
Nermin Samet
Cédric Rommel
David Picard
Eduardo Valle
    DiffM
ArXivPDFHTML
Abstract

We introduce a novel approach for 3D whole-body pose estimation, addressing the challenge of scale -- and deformability -- variance across body parts brought by the challenge of extending the 17 major joints on the human body to fine-grained keypoints on the face and hands. In addition to addressing the challenge of exploiting motion in unevenly sampled data, we combine stable diffusion to a hierarchical part representation which predicts the relative locations of fine-grained keypoints within each part (e.g., face) with respect to the part's local reference frame. On the H3WB dataset, our method greatly outperforms the current state of the art, which fails to exploit the temporal information. We also show considerable improvements compared to other spatiotemporal 3D human-pose estimation approaches that fail to account for the body part specificities. Code is available atthis https URL.

View on arXiv
Comments on this paper