ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.10193
22
0

GRAPE: Generalizable and Robust Multi-view Facial Capture

14 July 2024
Jing Li
Di Kang
Zhenyu He
    CVBM
    3DH
ArXivPDFHTML
Abstract

Deep learning-based multi-view facial capture methods have shown impressive accuracy while being several orders of magnitude faster than a traditional mesh registration pipeline. However, the existing systems (e.g. TEMPEH) are strictly restricted to inference on the data captured by the same camera array used to capture their training data. In this study, we aim to improve the generalization ability so that a trained model can be readily used for inference (i.e. capture new data) on a different camera array. To this end, we propose a more generalizable initialization module to extract the camera array-agnostic 3D feature, including a visual hull-based head localization and a visibility-aware 3D feature aggregation module enabled by the visual hull. In addition, we propose an ``update-by-disagreement'' learning strategy to better handle data noise (e.g. inaccurate registration, scan noise) by discarding potentially inaccurate supervision signals during training. The resultant generalizable and robust topologically consistent multi-view facial capture system (GRAPE) can be readily used to capture data on a different camera array, reducing great effort on data collection and processing. Experiments on the FaMoS and FaceScape datasets demonstrate the effectiveness of the proposed method.

View on arXiv
Comments on this paper