ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.09893
72
9

Synergistic Multi-Agent Framework with Trajectory Learning for Knowledge-Intensive Tasks

3 January 2025
Shengbin Yue
Siyuan Wang
Wei Chen
Xuanjing Huang
Zhongyu Wei
    LLMAG
ArXivPDFHTML
Abstract

Recent advancements in Large Language Models (LLMs) have led to significant breakthroughs in various natural language processing tasks. However, generating factually consistent responses in knowledge-intensive scenarios remains a challenge due to issues such as hallucination, difficulty in acquiring long-tailed knowledge, and limited memory expansion. This paper introduces SMART, a novel multi-agent framework that leverages external knowledge to enhance the interpretability and factual consistency of LLM-generated responses. SMART comprises four specialized agents, each performing a specific sub-trajectory action to navigate complex knowledge-intensive tasks. We propose a multi-agent co-training paradigm, Long-Short Trajectory Learning, which ensures synergistic collaboration among agents while maintaining fine-grained execution by each agent. Extensive experiments on five knowledge-intensive tasks demonstrate SMART's superior performance compared to widely adopted knowledge internalization and knowledge enhancement methods. Our framework can extend beyond knowledge-intensive tasks to more complex scenarios. Our code is available atthis https URL.

View on arXiv
Comments on this paper