ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.09628
21
1

Accelerating Electron Dynamics Simulations through Machine Learned Time Propagators

12 July 2024
Karan Shah
A. Cangi
    AI4CE
ArXivPDFHTML
Abstract

Time-dependent density functional theory (TDDFT) is a widely used method to investigate electron dynamics under various external perturbations such as laser fields. In this work, we present a novel approach to accelerate real time TDDFT based electron dynamics simulations using autoregressive neural operators as time-propagators for the electron density. By leveraging physics-informed constraints and high-resolution training data, our model achieves superior accuracy and computational speed compared to traditional numerical solvers. We demonstrate the effectiveness of our model on a class of one-dimensional diatomic molecules. This method has potential in enabling real-time, on-the-fly modeling of laser-irradiated molecules and materials with varying experimental parameters.

View on arXiv
Comments on this paper