ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.06759
24
1

Cybersecurity Defenses: Exploration of CVE Types through Attack Descriptions

9 July 2024
Refat Othman
Bruno Rossi
Barbara Russo
ArXivPDFHTML
Abstract

Vulnerabilities in software security can remain undiscovered even after being exploited. Linking attacks to vulnerabilities helps experts identify and respond promptly to the incident. This paper introduces VULDAT, a classification tool using a sentence transformer MPNET to identify system vulnerabilities from attack descriptions. Our model was applied to 100 attack techniques from the ATT&CK repository and 685 issues from the CVE repository. Then, we compare the performance of VULDAT against the other eight state-of-the-art classifiers based on sentence transformers. Our findings indicate that our model achieves the best performance with F1 score of 0.85, Precision of 0.86, and Recall of 0.83. Furthermore, we found 56% of CVE reports vulnerabilities associated with an attack were identified by VULDAT, and 61% of identified vulnerabilities were in the CVE repository.

View on arXiv
Comments on this paper