ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.05176
29
0

Towards Socially and Environmentally Responsible AI

23 April 2024
Pengfei Li
Yejia Liu
Jianyi Yang
Shaolei Ren
ArXivPDFHTML
Abstract

The sharply increasing sizes of artificial intelligence (AI) models come with significant energy consumption and environmental footprints, which can disproportionately impact certain (often marginalized) regions and hence create environmental inequity concerns. Moreover, concerns with social inequity have also emerged, as AI computing resources may not be equitably distributed across the globe and users from certain disadvantaged regions with severe resource constraints can consistently experience inferior model performance. Importantly, the inequity concerns that encompass both social and environmental dimensions still remain unexplored and have increasingly hindered responsible AI. In this paper, we leverage the spatial flexibility of AI inference workloads and propose equitable geographical load balancing (GLB) to fairly balance AI's regional social and environmental costs. Concretely, to penalize the disproportionately high social and environmental costs for equity, we introduce LqL_qLq​ norms as novel regularization terms into the optimization objective for GLB decisions. Our empirical results based on real-world AI inference traces demonstrate that while the existing GLB algorithms result in disproportionately large social and environmental costs in certain regions, our proposed equitable GLB can fairly balance AI's negative social and environmental costs across all the regions.

View on arXiv
Comments on this paper