ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.04718
21
2
v1v2 (latest)

Event-Based Simulation of Stochastic Memristive Devices for Neuromorphic Computing

14 June 2024
Waleed El-Geresy
Christos Papavassiliou
Deniz Gündüz
ArXiv (abs)PDFHTML
Abstract

In this paper, we build a general model of memristors suitable for the simulation of event-based systems, such as hardware spiking neural networks, and more generally, neuromorphic computing systems. We extend an existing general model of memristors - the Generalised Metastable Switch Model - to an event-driven setting, eliminating errors associated discrete time approximation, as well as offering potential improvements in terms of computational efficiency for simulation. We introduce the notion of a volatility state variable, to allow for the modelling of memory-dependent and dynamic switching behaviour, succinctly capturing and unifying a variety of volatile phenomena present in memristive devices, including state relaxation, structural disruption, Joule heating, and drift acceleration phenomena. We supply a drift dataset for titanium dioxide memristors and introduce a linear conductance model to simulate the drift characteristics, motivated by a proposed physical model of filament growth. We then demonstrate an approach for fitting the parameters of the event-based model to the drift model.

View on arXiv
Comments on this paper