59
0

Croppable Knowledge Graph Embedding

Abstract

Knowledge Graph Embedding (KGE) is a common approach for Knowledge Graphs (KGs) in AI tasks. Embedding dimensions depend on application scenarios. Requiring a new dimension means training a new KGE model from scratch, increasing cost and limiting efficiency and flexibility. In this work, we propose a novel KGE training framework MED. It allows one training to obtain a croppable KGE model for multiple scenarios with different dimensional needs. Sub-models of required dimensions can be directly cropped and used without extra training. In MED, we propose a mutual learning mechanism to improve the low-dimensional sub-models and make high-dimensional sub-models retain the low-dimensional sub-models' capacity, an evolutionary improvement mechanism to promote the high-dimensional sub-models to master the triple that the low-dimensional sub-models can not, and a dynamic loss weight to adaptively balance the multiple losses. Experiments on 4 KGE models across 4 standard KG completion datasets, 3 real-world scenarios using a large-scale KG, and extending MED to the BERT language model demonstrate its effectiveness, high efficiency, and flexible extensibility.

View on arXiv
@article{zhu2025_2407.02779,
  title={ Croppable Knowledge Graph Embedding },
  author={ Yushan Zhu and Wen Zhang and Zhiqiang Liu and Mingyang Chen and Lei Liang and Huajun Chen },
  journal={arXiv preprint arXiv:2407.02779},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.