ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.02719
46
0

Boosting Biomedical Concept Extraction by Rule-Based Data Augmentation

3 July 2024
Qiwei Shao
Fengran Mo
Jian-Yun Nie
    MedIm
ArXivPDFHTML
Abstract

Document-level biomedical concept extraction is the task of identifying biomedical concepts mentioned in a given document. Recent advancements have adapted pre-trained language models for this task. However, the scarcity of domain-specific data and the deviation of concepts from their canonical names often hinder these models' effectiveness. To tackle this issue, we employ MetaMapLite, an existing rule-based concept mapping system, to generate additional pseudo-annotated data from PubMed and PMC. The annotated data are used to augment the limited training data. Through extensive experiments, this study demonstrates the utility of a manually crafted concept mapping tool for training a better concept extraction model.

View on arXiv
Comments on this paper