ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.02369
16
1

Two-Step Q-Learning

2 July 2024
Antony Vijesh
Shreyas Sumithra Rudresha
    OffRL
ArXivPDFHTML
Abstract

Q-learning is a stochastic approximation version of the classic value iteration. The literature has established that Q-learning suffers from both maximization bias and slower convergence. Recently, multi-step algorithms have shown practical advantages over existing methods. This paper proposes a novel off-policy two-step Q-learning algorithms, without importance sampling. With suitable assumption it was shown that, iterates in the proposed two-step Q-learning is bounded and converges almost surely to the optimal Q-values. This study also address the convergence analysis of the smooth version of two-step Q-learning, i.e., by replacing max function with the log-sum-exp function. The proposed algorithms are robust and easy to implement. Finally, we test the proposed algorithms on benchmark problems such as the roulette problem, maximization bias problem, and randomly generated Markov decision processes and compare it with the existing methods available in literature. Numerical experiments demonstrate the superior performance of both the two-step Q-learning and its smooth variants.

View on arXiv
Comments on this paper