ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.02322
26
0

Stochastic Differential Equations models for Least-Squares Stochastic Gradient Descent

2 July 2024
Adrien Schertzer
Loucas Pillaud-Vivien
ArXivPDFHTML
Abstract

We study the dynamics of a continuous-time model of the Stochastic Gradient Descent (SGD) for the least-square problem. Indeed, pursuing the work of Li et al. (2019), we analyze Stochastic Differential Equations (SDEs) that model SGD either in the case of the training loss (finite samples) or the population one (online setting). A key qualitative feature of the dynamics is the existence of a perfect interpolator of the data, irrespective of the sample size. In both scenarios, we provide precise, non-asymptotic rates of convergence to the (possibly degenerate) stationary distribution. Additionally, we describe this asymptotic distribution, offering estimates of its mean, deviations from it, and a proof of the emergence of heavy-tails related to the step-size magnitude. Numerical simulations supporting our findings are also presented.

View on arXiv
Comments on this paper