ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.01317
30
1

Leveraging Speaker Embeddings in End-to-End Neural Diarization for Two-Speaker Scenarios

1 July 2024
Juan Ignacio Alvarez-Trejos
Beltrán Labrador
Alicia Lozano-Diez
ArXivPDFHTML
Abstract

End-to-end neural speaker diarization systems are able to address the speaker diarization task while effectively handling speech overlap. This work explores the incorporation of speaker information embeddings into the end-to-end systems to enhance the speaker discriminative capabilities, while maintaining their overlap handling strengths. To achieve this, we propose several methods for incorporating these embeddings along the acoustic features. Furthermore, we delve into an analysis of the correct handling of silence frames, the window length for extracting speaker embeddings and the transformer encoder size. The effectiveness of our proposed approach is thoroughly evaluated on the CallHome dataset for the two-speaker diarization task, with results that demonstrate a significant reduction in diarization error rates achieving a relative improvement of a 10.78% compared to the baseline end-to-end model.

View on arXiv
Comments on this paper