ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.00569
56
11

Investigating and Mitigating the Multimodal Hallucination Snowballing in Large Vision-Language Models

30 June 2024
Weihong Zhong
Xiaocheng Feng
Liang Zhao
Qiming Li
Lei Huang
Yuxuan Gu
Weitao Ma
Yuan Xu
Bing Qin
    MLLM
ArXivPDFHTML
Abstract

Though advanced in understanding visual information with human languages, Large Vision-Language Models (LVLMs) still suffer from multimodal hallucinations. A natural concern is that during multimodal interaction, the generated hallucinations could influence the LVLMs' subsequent generation. Thus, we raise a question: When presented with a query relevant to the previously generated hallucination, will LVLMs be misled and respond incorrectly, even though the ground visual information exists? To answer this, we propose a framework called MMHalSnowball to evaluate LVLMs' behaviors when encountering generated hallucinations, where LVLMs are required to answer specific visual questions within a curated hallucinatory conversation. Crucially, our experiment shows that the performance of open-source LVLMs drops by at least 31%31\%31%, indicating that LVLMs are prone to accept the generated hallucinations and make false claims that they would not have supported without distractions. We term this phenomenon Multimodal Hallucination Snowballing. To mitigate this, we further propose a training-free method called Residual Visual Decoding, where we revise the output distribution of LVLMs with the one derived from the residual visual input, providing models with direct access to the visual information. Experiments show that our method can mitigate more than 24%24\%24% of the snowballed multimodal hallucination while maintaining capabilities.

View on arXiv
Comments on this paper