ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.00347
24
0

Resource Allocation and Secure Wireless Communication in the Large Model-based Mobile Edge Computing System

29 June 2024
Zefan Wang
Yitong Wang
Jun Zhao
ArXivPDFHTML
Abstract

With the rapid advancement of large models and mobile edge computing, transfer learning, particularly through fine-tuning, has become crucial for adapting models to downstream tasks. Traditionally, this requires users to share their data with model owners for fine-tuning, which is not only costly but also raises significant privacy concerns. Furthermore, fine-tuning large-scale models is computationally intensive and often impractical for many users. To tackle these challenges, we introduce a system that combines offsite-tuning with physical-layer security, which provides local data owners with a lightweight adapter and a compressed emulator. Data owners then fine-tune the adapter locally and securely send it back to the model owners through a confidential channel for integration, ensuring privacy and resource conservation. Our paper focuses on optimizing computational resource allocation among data owners and the large model owner deployed on edge, and on the compression ratio of adapters. We incorporate a secrecy uplink channel to maximize the utility that we defined while minimizing system costs like energy consumption and delay. The optimization uses the Dinkelbach algorithm, fractional programming, successive convex approximation and alternating optimization. Experiments demonstrate our algorithm's superiority over existing methods.

View on arXiv
Comments on this paper