ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.00248
93
0
v1v2 (latest)

DiffuseDef: Improved Robustness to Adversarial Attacks

28 June 2024
Zhenhao Li
Huichi Zhou
Marek Rei
    DiffM
ArXiv (abs)PDFHTML
Main:8 Pages
7 Figures
Bibliography:4 Pages
12 Tables
Appendix:4 Pages
Abstract

Pretrained language models have significantly advanced performance across various natural language processing tasks. However, adversarial attacks continue to pose a critical challenge to system built using these models, as they can be exploited with carefully crafted adversarial texts. Inspired by the ability of diffusion models to predict and reduce noise in computer vision, we propose a novel and flexible adversarial defense method for language classification tasks, DiffuseDef, which incorporates a diffusion layer as a denoiser between the encoder and the classifier. During inference, the adversarial hidden state is first combined with sampled noise, then denoised iteratively and finally ensembled to produce a robust text representation. By integrating adversarial training, denoising, and ensembling techniques, we show that DiffuseDef improves over different existing adversarial defense methods and achieves state-of-the-art performance against common adversarial attacks.

View on arXiv
Comments on this paper