ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.19400
36
1

Deep Convolutional Neural Networks Meet Variational Shape Compactness Priors for Image Segmentation

23 May 2024
Kehui Zhang
Lingfeng Li
Hao Liu
Jing Yuan
Xue-Cheng Tai
ArXivPDFHTML
Abstract

Shape compactness is a key geometrical property to describe interesting regions in many image segmentation tasks. In this paper, we propose two novel algorithms to solve the introduced image segmentation problem that incorporates a shape-compactness prior. Existing algorithms for such a problem often suffer from computational inefficiency, difficulty in reaching a local minimum, and the need to fine-tune the hyperparameters. To address these issues, we propose a novel optimization model along with its equivalent primal-dual model and introduce a new optimization algorithm based on primal-dual threshold dynamics (PD-TD). Additionally, we relax the solution constraint and propose another novel primal-dual soft threshold-dynamics algorithm (PD-STD) to achieve superior performance. Based on the variational explanation of the sigmoid layer, the proposed PD-STD algorithm can be integrated into Deep Neural Networks (DNNs) to enforce compact regions as image segmentation results. Compared to existing deep learning methods, extensive experiments demonstrated that the proposed algorithms outperformed state-of-the-art algorithms in numerical efficiency and effectiveness, especially while applying to the popular networks of DeepLabV3 and IrisParseNet with higher IoU, dice, and compactness metrics on noisy Iris datasets. In particular, the proposed algorithms significantly improve IoU by 20% training on a highly noisy image dataset.

View on arXiv
Comments on this paper