ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.18740
37
0

Re-Ranking Step by Step: Investigating Pre-Filtering for Re-Ranking with Large Language Models

26 June 2024
Baharan Nouriinanloo
Maxime Lamothe
ArXivPDFHTML
Abstract

Large Language Models (LLMs) have been revolutionizing a myriad of natural language processing tasks with their diverse zero-shot capabilities. Indeed, existing work has shown that LLMs can be used to great effect for many tasks, such as information retrieval (IR), and passage ranking. However, current state-of-the-art results heavily lean on the capabilities of the LLM being used. Currently, proprietary, and very large LLMs such as GPT-4 are the highest performing passage re-rankers. Hence, users without the resources to leverage top of the line LLMs, or ones that are closed source, are at a disadvantage. In this paper, we investigate the use of a pre-filtering step before passage re-ranking in IR. Our experiments show that by using a small number of human generated relevance scores, coupled with LLM relevance scoring, it is effectively possible to filter out irrelevant passages before re-ranking. Our experiments also show that this pre-filtering then allows the LLM to perform significantly better at the re-ranking task. Indeed, our results show that smaller models such as Mixtral can become competitive with much larger proprietary models (e.g., ChatGPT and GPT-4).

View on arXiv
Comments on this paper