ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.18539
34
16

TexPainter: Generative Mesh Texturing with Multi-view Consistency

17 May 2024
Hongkun Zhang
Zherong Pan
Congyi Zhang
Lifeng Zhu
Xifeng Gao
ArXivPDFHTML
Abstract

The recent success of pre-trained diffusion models unlocks the possibility of the automatic generation of textures for arbitrary 3D meshes in the wild. However, these models are trained in the screen space, while converting them to a multi-view consistent texture image poses a major obstacle to the output quality. In this paper, we propose a novel method to enforce multi-view consistency. Our method is based on the observation that latent space in a pre-trained diffusion model is noised separately for each camera view, making it difficult to achieve multi-view consistency by directly manipulating the latent codes. Based on the celebrated Denoising Diffusion Implicit Models (DDIM) scheme, we propose to use an optimization-based color-fusion to enforce consistency and indirectly modify the latent codes by gradient back-propagation. Our method further relaxes the sequential dependency assumption among the camera views. By evaluating on a series of general 3D models, we find our simple approach improves consistency and overall quality of the generated textures as compared to competing state-of-the-arts. Our implementation is available at: https://github.com/Quantuman134/TexPainter

View on arXiv
Comments on this paper