ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.18240
35
0

Concordance in basal cell carcinoma diagnosis. Building a proper ground truth to train Artificial Intelligence tools

26 June 2024
Francisca Silva-Clavería
Carmen Serrano
Iván Matas
Amalia Serrano
Tomás Toledo-Pastrana
David Moreno-Ramírez
B. Acha
ArXivPDFHTML
Abstract

Background: The existence of different basal cell carcinoma (BCC) clinical criteria cannot be objectively validated. An adequate ground-truth is needed to train an artificial intelligence (AI) tool that explains the BCC diagnosis by providing its dermoscopic features. Objectives: To determine the consensus among dermatologists on dermoscopic criteria of 204 BCC. To analyze the performance of an AI tool when the ground-truth is inferred. Methods: A single center, diagnostic and prospective study was conducted to analyze the agreement in dermoscopic criteria by four dermatologists and then derive a reference standard. 1434 dermoscopic images have been used, that were taken by a primary health physician, sent via teledermatology, and diagnosed by a dermatologist. They were randomly selected from the teledermatology platform (2019-2021). 204 of them were tested with an AI tool; the remainder trained it. The performance of the AI tool trained using the ground-truth of one dermatologist versus the ground-truth statistically inferred from the consensus of four dermatologists was analyzed using McNemar's test and Hamming distance. Results: Dermatologists achieve perfect agreement in the diagnosis of BCC (Fleiss-Kappa=0.9079), and a high correlation with the biopsy (PPV=0.9670). However, there is low agreement in detecting some dermoscopic criteria. Statistical differences were found in the performance of the AI tool trained using the ground-truth of one dermatologist versus the ground-truth statistically inferred from the consensus of four dermatologists. Conclusions: Care should be taken when training an AI tool to determine the BCC patterns present in a lesion. Ground-truth should be established from multiple dermatologists.

View on arXiv
Comments on this paper